National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Study of protein structure and dynamics by means of optical spectroscopy
Pazderka, Tomáš ; Kopecký, Vladimír (advisor) ; Kaminský, Jakub (referee) ; Setnička, Vladimír (referee)
Title: Study of protein structure and dynamics by means of optical spectroscopy Author: Tomáš Pazderka Institute: Institute of Physics of Charles University Supervisor: RNDr. Vladimír Kopecký, Ph.D., Institute of Physics of Charles University Abstract: The aim of this thesis is to improve understanding of protein structure and dynamics and extend experimental setup and data processing for such stud- ies. We focus on the extension of experimental feasability of vibrational optical activity (VOA). We have demonstrated a usability of intensity calibration in the field of Raman optical activity. Advantages for measurements on multiple instru- ments and/or using different configurations have been shown. A new instrumental setup has been developed for microsampling measurements of vibrational circular dichroism spectra with a spatial resolution of 1 mm. Using this technique, spatial inhomogeneities in a sample of protein fibrils have been observed. Model com- pounds for amide nonplanarity have been investigated utilizing several methods of optical spectroscopy and key spectral features for determination of amide non- planarity and the absolute configuration have been identified. A comprehensive set of Raman spectra of proteinogenic amino acids has been measured. Sample concentration dependencies and consequent...
Raman optical activity of biomolecules: From simple models to complex systems
Pazderková, Markéta ; Baumruk, Vladimír (advisor)
The aim of the thesis is to utilize Raman optical activity (ROA) to get unique information on peptide/protein conformation, which is otherwise difficult or even impossible to obtain. We have focused on investigation of amide and disulfide groups. Utilizing tailor-made model structures (rigid tricyclic spirodilactams with two interacting nonplanar amide groups), special model peptides and even biologically active molecules (neurohypophyseal hormones and their agonistic and antagonistic analogs, antimicrobial peptide lasiocepsin and its analogs having different disulfide pattern) we have traced specific spectral manifestation of nonplanar amides and disulfides. ROA results were supplemented by data obtained by complementary chiroptical methods - electronic (including vacuum UV - SRCD) and vibrational circular dichroism. When used in a concerted fashion, these techniques provide complex information on peptide/protein secondary structure. Where possible, experimental chiroptical data were compared to ab initio calculations. In chiroptical spectra we have found and interpreted signals reflecting nonplanarity of the amide group. Moreover, in ROA spectra we have identified signals due to S-S stretching vibrations which seem to reflect sense of the disulfide group torsion.
Study of protein structure and dynamics by means of optical spectroscopy
Pazderka, Tomáš ; Kopecký, Vladimír (advisor) ; Kaminský, Jakub (referee) ; Setnička, Vladimír (referee)
Title: Study of protein structure and dynamics by means of optical spectroscopy Author: Tomáš Pazderka Institute: Institute of Physics of Charles University Supervisor: RNDr. Vladimír Kopecký, Ph.D., Institute of Physics of Charles University Abstract: The aim of this thesis is to improve understanding of protein structure and dynamics and extend experimental setup and data processing for such stud- ies. We focus on the extension of experimental feasability of vibrational optical activity (VOA). We have demonstrated a usability of intensity calibration in the field of Raman optical activity. Advantages for measurements on multiple instru- ments and/or using different configurations have been shown. A new instrumental setup has been developed for microsampling measurements of vibrational circular dichroism spectra with a spatial resolution of 1 mm. Using this technique, spatial inhomogeneities in a sample of protein fibrils have been observed. Model com- pounds for amide nonplanarity have been investigated utilizing several methods of optical spectroscopy and key spectral features for determination of amide non- planarity and the absolute configuration have been identified. A comprehensive set of Raman spectra of proteinogenic amino acids has been measured. Sample concentration dependencies and consequent...
Structure and dynamics of peptides and proteins in solution: application of Raman optical activity
Profant, Václav ; Baumruk, Vladimír (advisor) ; Kapitán, Josef (referee) ; Setnička, Vladimír (referee)
The thesis inquires the specific and advantageous applications of Raman optical activity (ROA) in wide range of diverse structural and conformational studies of biomolecules and other biologically important molecules. Our investigation was focused on several interconnected topics covering the fields of methodology, basic and applied research. The combination of experimental and theoretical approaches facilitated deeper understanding of studied phenomena, and allowed for the effects of solute-solvent interactions. High-quality spectra of model molecules in the C-H stretching region, acquired as a result of successful extension of ROA measurements to the whole region of fundamental molecular vibrations, enabled verification and further development of methods for ROA spectra simulations encompassing anharmonic corrections. Utilizing spirodilactams with highly nonplanar amide groups, we have traced the specific ROA spectral manifestations of amide nonplanarity. In case of antimicrobial peptide lasiocepsine, we have successfully simulated ROA signals of S-S stretching vibrations which contrary to current belief do not seem to reflect sense of the S-S group torsion. In larger molecular systems, we have better understood the process of the formation of stable polyproline II conformation and proved that ROA may...
Raman optical activity of biomolecules: From simple models to complex systems
Pazderková, Markéta ; Baumruk, Vladimír (advisor) ; Kapitán, Josef (referee) ; Matějka, Pavel (referee)
The aim of the thesis is to utilize Raman optical activity (ROA) to get unique information on peptide/protein conformation, which is otherwise difficult or even impossible to obtain. We have focused on investigation of amide and disulfide groups. Utilizing tailor-made model structures (rigid tricyclic spirodilactams with two interacting nonplanar amide groups), special model peptides and even biologically active molecules (neurohypophyseal hormones and their agonistic and antagonistic analogs, antimicrobial peptide lasiocepsin and its analogs having different disulfide pattern) we have traced specific spectral manifestation of nonplanar amides and disulfides. ROA results were supplemented by data obtained by complementary chiroptical methods - electronic (including vacuum UV - SRCD) and vibrational circular dichroism. When used in a concerted fashion, these techniques provide complex information on peptide/protein secondary structure. Where possible, experimental chiroptical data were compared to ab initio calculations. In chiroptical spectra we have found and interpreted signals reflecting nonplanarity of the amide group. Moreover, in ROA spectra we have identified signals due to S-S stretching vibrations which seem to reflect sense of the disulfide group torsion.
Raman optical activity of biomolecules: From simple models to complex systems
Pazderková, Markéta ; Baumruk, Vladimír (advisor)
The aim of the thesis is to utilize Raman optical activity (ROA) to get unique information on peptide/protein conformation, which is otherwise difficult or even impossible to obtain. We have focused on investigation of amide and disulfide groups. Utilizing tailor-made model structures (rigid tricyclic spirodilactams with two interacting nonplanar amide groups), special model peptides and even biologically active molecules (neurohypophyseal hormones and their agonistic and antagonistic analogs, antimicrobial peptide lasiocepsin and its analogs having different disulfide pattern) we have traced specific spectral manifestation of nonplanar amides and disulfides. ROA results were supplemented by data obtained by complementary chiroptical methods - electronic (including vacuum UV - SRCD) and vibrational circular dichroism. When used in a concerted fashion, these techniques provide complex information on peptide/protein secondary structure. Where possible, experimental chiroptical data were compared to ab initio calculations. In chiroptical spectra we have found and interpreted signals reflecting nonplanarity of the amide group. Moreover, in ROA spectra we have identified signals due to S-S stretching vibrations which seem to reflect sense of the disulfide group torsion.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.